Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly

Author:

Jeon Jaekyun,Thurber Kent R.,Ghirlando Rodolfo,Yau Wai-Ming,Tycko Robert

Abstract

Common experimental approaches for characterizing structural conversion processes such as protein folding and self-assembly do not report on all aspects of the evolution from an initial state to the final state. Here, we demonstrate an approach that is based on rapid mixing, freeze-trapping, and low-temperature solid-state NMR (ssNMR) with signal enhancements from dynamic nuclear polarization (DNP). Experiments on the folding and tetramerization of the 26-residue peptide melittin following a rapid pH jump show that multiple aspects of molecular structure can be followed with millisecond time resolution, including secondary structure at specific isotopically labeled sites, intramolecular and intermolecular contacts between specific pairs of labeled residues, and overall structural order. DNP-enhanced ssNMR data reveal that conversion of conformationally disordered melittin monomers at low pH to α-helical conformations at neutral pH occurs on nearly the same timescale as formation of antiparallel melittin dimers, about 6 to 9 ms for 0.3 mM melittin at 24 °C in aqueous solution containing 20% (vol/vol) glycerol and 75 mM sodium phosphate. Although stopped-flow fluorescence data suggest that melittin tetramers form quickly after dimerization, ssNMR spectra show that full structural order within melittin tetramers develops more slowly, in ∼60 ms. Time-resolved ssNMR is likely to find many applications to biomolecular structural conversion processes, including early stages of amyloid formation, viral capsid formation, and protein–protein recognition.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3