Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement

Author:

Zhu Chongqin,Gao Yurui,Zhu Weiduo,Jiang Jian,Liu Jie,Wang Jianjun,Francisco Joseph S.,Zeng Xiao Cheng

Abstract

Water–solid interfaces play important roles in a wide range of fields, including atmospheric science, geochemistry, electrochemistry, and food science. Herein, we report simulation evidence of 2-dimensional (2D) ice formation on various surfaces and the dependence of the 2D crystalline structure on the hydrophobicity and morphology of the underlying surface. Contrary to the prevailing view that nanoscale confinement is necessary for the 2D liquid-to-bilayer ice transition, we find that the liquid-to-bilayer hexagonal ice (BHI) transition can occur either on a model smooth surface or on model fcc-crystal surfaces with indices of (100), (110), and (111) near room temperature. We identify a critical parameter that characterizes the water–surface interaction, above which the BHI can form on the surface. This critical parameter increases as the temperature increases. Even at temperatures above the freezing temperature of bulk ice (Ih), we find that BHI can also form on a superhydrophilic surface due to the strong water–surface interaction. The tendency toward the formation of BHI without confinement reflects a proper water–surface interaction that can compensate for the entropy loss during the freezing transition. Furthermore, phase diagrams of 2D ice formation are described on the plane of the adsorption energy versus the fcc lattice constant (Eadsafcc), where 4 monolayer square-like ices are also identified on the fcc model surfaces with distinct water–surface interactions.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3