Abstract
Interactions between RNA and proteins are pervasive in biology, driving fundamental processes such as protein translation and participating in the regulation of gene expression. Modeling the energies of RNA–protein interactions is therefore critical for understanding and repurposing living systems but has been hindered by complexities unique to RNA–protein binding. Here, we bring together several advances to complete a calculation framework for RNA–protein binding affinities, including a unified free energy function for bound complexes, automated Rosetta modeling of mutations, and use of secondary structure-based energetic calculations to model unbound RNA states. The resulting Rosetta-Vienna RNP-ΔΔG method achieves root-mean-squared errors (RMSEs) of 1.3 kcal/mol on high-throughput MS2 coat protein–RNA measurements and 1.5 kcal/mol on an independent test set involving the signal recognition particle, human U1A, PUM1, and FOX-1. As a stringent test, the method achieves RMSE accuracy of 1.4 kcal/mol in blind predictions of hundreds of human PUM2–RNA relative binding affinities. Overall, these RMSE accuracies are significantly better than those attained by prior structure-based approaches applied to the same systems. Importantly, Rosetta-Vienna RNP-ΔΔG establishes a framework for further improvements in modeling RNA–protein binding that can be tested by prospective high-throughput measurements on new systems.
Funder
HHS | National Institutes of Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献