Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) growth pathway detects nutrients through a variety of sensors and regulators that converge on the Rag GTPases, which form heterodimers consisting of RagA or RagB tightly bound to RagC or RagD and control the subcellular localization of mTORC1. The Rag heterodimer uses a unique “locking” mechanism to stabilize its active (GTPRagA–RagCGDP) or inactive (GDPRagA–RagCGTP) nucleotide states. The Ragulator complex tethers the Rag heterodimer to the lysosomal surface, and the SLC38A9 transmembrane protein is a lysosomal arginine sensor that upon activation stimulates mTORC1 activity through the Rag GTPases. How Ragulator and SLC38A9 control the nucleotide loading state of the Rag GTPases remains incompletely understood. Here we find that Ragulator and SLC38A9 are each unique guanine exchange factors (GEFs) that collectively push the Rag GTPases toward the active state. Ragulator triggers GTP release from RagC, thus resolving the locked inactivated state of the Rag GTPases. Upon arginine binding, SLC38A9 converts RagA from the GDP- to the GTP-loaded state, and therefore activates the Rag GTPase heterodimer. Altogether, Ragulator and SLC38A9 act on the Rag GTPases to activate the mTORC1 pathway in response to nutrient sufficiency.
Funder
HHS | National Institutes of Health
U.S. Department of Defense
Lustgarten Foundation
Howard Hughes Medical Institute
American Cancer Society
Life Sciences Research Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献