Transitions between foot postures are associated with elevated rates of body size evolution in mammals

Author:

Kubo TaiORCID,Sakamoto ManabuORCID,Meade Andrew,Venditti Chris

Abstract

Terrestrial mammals have evolved various foot postures: flat-footed (plantigrady), tiptoed (digitigrady), and hooved (unguligrady) postures. Although the importance of foot posture on ecology and body size of mammalian species has been widely recognized, its evolutionary trajectory and influence on body size evolution across mammalian phylogeny remain untested. Taking a Bayesian phylogenetic approach combined with a comprehensive dataset of foot postures in 880 extant mammalian species, we investigated the evolutionary history of foot postures and rates of body size evolution, within the same posture and at transitions between postures. Our results show that the common ancestor of mammals was plantigrade, and transitions predominantly occurred only between plantigrady and digitigrady and between digitigrady and unguligrady. At the transitions between plantigrady and digitigrady and between digitigrady and unguligrady, rates of body size evolution are significantly elevated leading to the larger body masses of digitigrade species (∼1 kg) and unguligrade species (∼78 kg) compared with their respective ancestral postures [plantigrady (∼0.75 kg) and digitigrady]. Our results demonstrate the importance of foot postures on mammalian body size evolution and have implications for mammalian body size increase through time. In addition, we highlight a way forward for future studies that seek to integrate morphofunctional and macroevolutionary approaches.

Funder

MEXT | Japan Society for the Promotion of Science

Leverhulme Trust

RCUK | Biotechnology and Biological Sciences Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference31 articles.

1. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

2. Polly PD (2007) Limbs in mammalian evolution. Fins into Limbs: Evolution, Development, and Transformation, ed Hall BK (Univ Chicago Press, Chicago), pp 245–268.

3. The description of mammals–2 limbs and locomotion of terrestrial mammals;Brown;Mammal Rev,1973

4. Allometry of the leg muscles of mammals

5. Scaling Body Support in Mammals: Limb Posture and Muscle Mechanics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3