Vibrio choleraeFeoB contains a dual nucleotide-specific NTPase domain essential for ferrous iron uptake

Author:

Shin Minhye,Mey Alexandra R.,Payne Shelley M.ORCID

Abstract

The Feo ferrous iron transporter is widely distributed among bacteria and archaea, but its mechanism of transport has not been fully elucidated. InVibrio cholerae, the transport system requires three proteins: the small cytosolic proteins FeoA and FeoC and a large cytoplasmic-membrane–associated protein FeoB, which has an N-terminal G-protein domain. We show that, in contrast toEscherichia coliFeoB, which is solely a GTPase, theV. choleraeandHelicobacter pyloriFeoB proteins have both GTPase and ATPase activity. InV. cholerae, mutation of the G4 motif, responsible for hydrogen bonding with the guanine base, abolished the GTPase activity but not ATPase activity. The ATPase activity of the G4 motif mutants was sufficient for Feo function in the absence of GTPase. We show that the serine and asparagine residues in the G5 motif likely play a role in the ATPase activity, and substitution of these residues with those found in the corresponding positions inE. coliFeoB resulted in similar nucleotide hydrolysis activity in theE. coliprotein. These results add significantly to our understanding of the NTPase domain of FeoB and its role in Feo function.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3