Author:
Wang Xiao-hui,Su Min,Gao Feng,Xie Wenjun,Zeng Yang,Li De-lin,Liu Xue-lei,Zhao Hong,Qin Li,Li Fei,Liu Qun,Clarke Oliver B.,Lam Sin Man,Shui Guang-hou,Hendrickson Wayne A.,Chen Yu-hang
Abstract
Trimeric intracellular cation (TRIC) channels are thought to provide counter-ion currents that facilitate the active release of Ca2+from intracellular stores. TRIC activity is controlled by voltage and Ca2+modulation, but underlying mechanisms have remained unknown. Here we describe high-resolution crystal structures of vertebrate TRIC-A and TRIC-B channels, both in Ca2+-bound and Ca2+-free states, and we analyze conductance properties in structure-inspired mutagenesis experiments. The TRIC channels are symmetric trimers, wherein we find a pore in each protomer that is gated by a highly conserved lysine residue. In the resting state, Ca2+binding at the luminal surface of TRIC-A, on its threefold axis, stabilizes lysine blockage of the pores. During active Ca2+release, luminal Ca2+depletion removes inhibition to permit the lysine-bearing and voltage-sensing helix to move in response to consequent membrane hyperpolarization. Diacylglycerol is found at interprotomer interfaces, suggesting a role in metabolic control.
Publisher
Proceedings of the National Academy of Sciences
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献