Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacteriumSynechococcus elongatusUTEX 2973

Author:

Ungerer Justin,Wendt Kristen E.,Hendry John I.,Maranas Costas D.,Pakrasi Himadri B.ORCID

Abstract

Cyanobacteria are emerging as attractive organisms for sustainable bioproduction. We previously describedSynechococcus elongatusUTEX 2973 as the fastest growing cyanobacterium known.Synechococcus2973 exhibits high light tolerance and an increased photosynthetic rate and produces biomass at three times the rate of its close relative, the model strainSynechococcus elongatus7942. The two strains differ at 55 genetic loci, andsome of these loci must contain the genetic determinants of rapid photoautotrophic growth and improved photosynthetic rate. Using CRISPR/Cpf1, we performed a comprehensive mutational analysis ofSynechococcus2973 and identified three specific genes,atpA,ppnK, andrpaA, with SNPs that confer rapid growth. The fast-growth–associated allele of each gene was then used to replace the wild-type alleles inSynechococcus7942. Upon incorporation, each allele successively increased the growth rate ofSynechococcus7942; remarkably, inclusion of all three alleles drastically reduced the doubling time from 6.8 to 2.3 hours. Further analysis revealed that our engineering effort doubled the photosynthetic productivity ofSynechococcus7942. We also determined that the fast-growth–associated allele ofatpAyielded an ATP synthase with higher specific activity, while that ofppnKencoded a NAD+kinase with significantly improved kinetics. TherpaASNPs cause broad changes in the transcriptional profile, as this gene is the master output regulator of the circadian clock. This pioneering study has revealed the molecular basis for rapid growth, demonstrating that limited genetic changes can dramatically improve the growth rate of a microbe by as much as threefold.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3