Higher superconducting transition temperature by breaking the universal pressure relation

Author:

Deng LiangziORCID,Zheng Yongping,Wu Zheng,Huyan Shuyuan,Wu Hung-Cheng,Nie Yifan,Cho Kyeongjae,Chu Ching-Wu

Abstract

By investigating the bulk superconducting state via dc magnetization measurements, we have discovered a common resurgence of the superconducting transition temperatures (Tcs) of the monolayer Bi2Sr2CuO6+δ(Bi2201) and bilayer Bi2Sr2CaCu2O8+δ(Bi2212) to beyond the maximum Tcs (Tc-maxs) predicted by the universal relation between Tcand doping (p) or pressure (P) at higher pressures. The Tcof underdoped Bi2201 initially increases from 9.6 K at ambient to a peak at 23 K at 26 GPa and then drops as expected from the universal Tc-P relation. However, at pressures above 40 GPa, Tcrises rapidly without any sign of saturation up to 30 K at 51 GPa. Similarly, the Tcfor the slightly overdoped Bi2212 increases after passing a broad valley between 20 and 36 GPa and reaches 90 K without any sign of saturation at 56 GPa. We have, therefore, attributed this Tcresurgence to a possible pressure-induced electronic transition in the cuprate compounds due to a charge transfer between the Cu 3dx2y2and the O 2pbands projected from a hybrid bonding state, leading to an increase of the density of states at the Fermi level, in agreement with our density functional theory calculations. Similar Tc-P behavior has also been reported in the trilayer Br2Sr2Ca2Cu3O10+δ(Bi2223). These observations suggest that higher Tcs than those previously reported for the layered cuprate high-temperature superconductors can be achieved by breaking away from the universal Tc-P relation through the application of higher pressures.

Funder

DOD | USAF | AFMC | Air Force Office of Scientific Research

Ministry of Knowledge Economy | Korea Institute of Energy Technology Evaluation and Planning

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3