Abstract
The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined fromMycobacterium smegmatiswhich hydrolyzes ATP very poorly. The structure of the α3β3-component of the catalytic domain is similar to those in active F1-ATPases inEscherichia coliandGeobacillus stearothermophilus. However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. InE. coliandG. stearothermophilus, the α-helices adopt an “up” state where the α-helices enter the α3β3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase fromCaldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The βE-subunits in both enzymes are in the usual “open” conformation but appear to be occupied uniquely by the combination of an adenosine 5′-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1domain inMycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.
Funder
RCUK | Medical Research Council
European Drug Initiative on Channels and Transporters
The Royal Society of New Zealand
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献