The structure of the catalytic domain of the ATP synthase fromMycobacterium smegmatisis a target for developing antitubercular drugs

Author:

Zhang Alice Tianbu,Montgomery Martin G.,Leslie Andrew G. W.,Cook Gregory M.,Walker John E.ORCID

Abstract

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined fromMycobacterium smegmatiswhich hydrolyzes ATP very poorly. The structure of the α3β3-component of the catalytic domain is similar to those in active F1-ATPases inEscherichia coliandGeobacillus stearothermophilus. However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. InE. coliandG. stearothermophilus, the α-helices adopt an “up” state where the α-helices enter the α3β3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase fromCaldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The βE-subunits in both enzymes are in the usual “open” conformation but appear to be occupied uniquely by the combination of an adenosine 5′-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1domain inMycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.

Funder

RCUK | Medical Research Council

European Drug Initiative on Channels and Transporters

The Royal Society of New Zealand

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3