Dopamine D2 receptor-mediated circuit from the central amygdala to the bed nucleus of the stria terminalis regulates impulsive behavior

Author:

Kim Bokyeong,Yoon SehyounORCID,Nakajima RyuichiORCID,Lee Hyo Jin,Lim Hee Jeong,Lee Yeon-Kyung,Choi June-Seek,Yoon Bong-June,Augustine George J.,Baik Ja-Hyun

Abstract

Impulsivity is closely associated with addictive disorders, and changes in the brain dopamine system have been proposed to affect impulse control in reward-related behaviors. However, the central neural pathways through which the dopamine system controls impulsive behavior are still unclear. We found that the absence of the D2 dopamine receptor (D2R) increased impulsive behavior in mice, whereas restoration of D2R expression specifically in the central amygdala (CeA) of D2R knockout mice (Drd2−/−)normalized their enhanced impulsivity. Inhibitory synaptic output from D2R-expressing neurons in the CeA underlies modulation of impulsive behavior because optogenetic activation of D2R-positive inhibitory neurons that project from the CeA to the bed nucleus of the stria terminalis (BNST) attenuate such behavior. Our identification of the key contribution of D2R-expressing neurons in the CeA → BNST circuit to the control of impulsive behavior reveals a pathway that could serve as a target for approaches to the management of neuropsychiatric disorders associated with impulsivity.

Funder

National Research Foundation of Korea

Singapore Ministry of Education

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3