Author:
Wagoner Jason A.,Dill Ken A.
Abstract
How does a biomolecular machine achieve high speed at high efficiency? We explore optimization principles using a simple two-state dynamical model. With this model, we establish physical principles—such as the optimal way to distribute free-energy changes and barriers across the machine cycle—and connect them to biological mechanisms. We find that a machine can achieve high speed without sacrificing efficiency by varying its conformational free energy to directly link the downhill, chemical energy to the uphill, mechanical work and by splitting a large work step into more numerous, smaller substeps. Experimental evidence suggests that these mechanisms are commonly used by biomolecular machines. This model is useful for exploring questions of evolution and optimization in molecular machines.
Funder
HHS | National Institutes of Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献