CAP2 deficiency delays myofibril actin cytoskeleton differentiation and disturbs skeletal muscle architecture and function

Author:

Kepser Lara-Jane,Damar Fidan,De Cicco Teresa,Chaponnier Christine,Prószyński Tomasz J.ORCID,Pagenstecher Axel,Rust Marco B.

Abstract

Actin filaments (F-actin) are key components of sarcomeres, the basic contractile units of skeletal muscle myofibrils. A crucial step during myofibril differentiation is the sequential exchange of α-actin isoforms from smooth muscle (α-SMA) and cardiac (α-CAA) to skeletal muscle α-actin (α-SKA) that, in mice, occurs during early postnatal life. This “α-actin switch” requires the coordinated activity of actin regulators because it is vital that sarcomere structure and function are maintained during differentiation. The molecular machinery that controls the α-actin switch, however, remains enigmatic. Cyclase-associated proteins (CAP) are a family of actin regulators with largely unknown physiological functions. We here report a function for CAP2 in regulating the α-actin exchange during myofibril differentiation. This α-actin switch was delayed in systemic CAP2 mutant mice, and myofibrils remained in an undifferentiated stage at the onset of the often excessive voluntary movements in postnatal mice. The delay in the α-actin switch coincided with the onset of motor function deficits and histopathological changes including a high frequency of type IIB ring fibers. Our data suggest that subtle disturbances of postnatal F-actin remodeling are sufficient for predisposing muscle fibers to form ring fibers. Cofilin2, a putative CAP2 interaction partner, has been recently implicated in myofibril actin cytoskeleton differentiation, and the myopathies in cofilin2 and CAP2 mutant mice showed striking similarities. We therefore propose a model in which CAP2 and cofilin2 cooperate in actin regulation during myofibril differentiation.

Funder

UKGM

German Research Foundation

Fondazione Cariplo

Polish National Science Center

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference42 articles.

1. Banker BQ Engel AG (1986) Basic reactions of muscle. Myology. Basic and Clinical, eds Banker BQ Engel AG (McGraw-Hill, New York), pp 845–907.

2. Carpenter S Karpati G (1984) Pathology of Skeletal Muscle (Churchill Livingston, New York), pp 216–220.

3. The incidence of ringed fibres and sarcoplasmic masses in normal and diseased muscle

4. Inclusion body myositis with abundant ring fibers;Del Bigio;Acta Neuropathol,1992

5. Muscle biopsy evaluation in neuromuscular disorders;Joyce;Phys Med Rehabil Clin N Am,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3