Abstract
Optical properties of compressed fluid hydrogen in the region where dissociation and metallization is observed are computed by ab initio methods and compared with recent experimental results. We confirm that at T > 3,000 K, both processes are continuous, while at T < 1,500 K, the first-order phase transition is accompanied by a discontinuity of the dc conductivity and the thermal conductivity, while both the reflectivity and absorption coefficient vary rapidly but continuously. Our results support the recent analysis of National Ignition Facility (NIF) experiments [Celliers PM, et al. (2018) Science 361:677–682], which assigned the inception of metallization to pressures where the reflectivity is ∼0.3. Our results also support the conclusion that the temperature plateau seen in laser-heated diamond-anvil cell (DAC) experiments at temperatures higher than 1,500 K corresponds to the onset of optical absorption, not to the phase transition.
Funder
DOE | National Nuclear Security Administration
Agence Nationale de la Recherche
Publisher
Proceedings of the National Academy of Sciences
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献