Abstract
The structure of promoter chromatin determines the ability of transcription factors (TFs) to bind to DNA and therefore has a profound effect on the expression levels of genes. However, the role of spontaneous nucleosome movements in this process is not fully understood. Here, we developed a single-molecule optical tweezers assay capable of simultaneously characterizing the base pair-scale diffusion of a nucleosome on DNA and the binding of a TF, using the luteinizing hormone β subunit gene (Lhb) promoter and Egr-1 as a model system. Our results demonstrate that nucleosomes undergo confined diffusion, and that the incorporation of the histone variant H2A.Z serves to partially relieve this confinement, inducing a different type of nucleosome repositioning. The increase in diffusion leads to exposure of a TF’s binding site and facilitates its association with the DNA, which, in turn, biases the subsequent movement of the nucleosome. Our findings suggest the use of mobile nucleosomes as a general transcriptional regulatory mechanism.
Funder
Israel Science Foundation
J. S. Frankford Research Fund
Publisher
Proceedings of the National Academy of Sciences
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献