Visualizing probabilistic models and data with Intensive Principal Component Analysis

Author:

Quinn Katherine N.ORCID,Clement Colin B.,De Bernardis Francesco,Niemack Michael D.,Sethna James P.ORCID

Abstract

Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the “curse of dimensionality” in high dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero. The result is intensive embedding, which not only is isometric (preserving local distances) but also allows global structure to be more transparently visualized. We develop the Intensive Principal Component Analysis (InPCA) and demonstrate clear improvements in visualizations of the Ising model of magnetic spins, a neural network, and the dark energy cold dark matter (ΛCDM) model as applied to the cosmic microwave background.

Funder

NSF

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference30 articles.

1. From visual data exploration to visual data mining: A survey;De Oliveira;IEEE Trans. Visualization Comput. Graphics,2003

2. Visualizing high-dimensional data: Advances in the past decade;Liu;IEEE Trans. Visualization Comput. Graphics,2017

3. J. A. Lee , M. Verleysen , Nonlinear Dimensionality Reduction (Springer, New York, NY, 2007).

4. A survey on unsupervised outlier detection in high-dimensional numerical data;Zimek;Stat. Anal. Data Mining ASA Data Sci. J.,2012

5. K. P. Murphy , Machine Learning: A Probabilistic Perspective (The MIT Press, 2012).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3