Environmental DNA for improved detection and environmental surveillance of schistosomiasis

Author:

Sengupta Mita E.ORCID,Hellström MicaelaORCID,Kariuki Henry C.,Olsen Annette,Thomsen Philip F.,Mejer Helena,Willerslev Eske,Mwanje Mariam T.,Madsen Henry,Kristensen Thomas K.,Stensgaard Anna-Sofie,Vennervald Birgitte J.

Abstract

Schistosomiasis is a water-based, infectious disease with high morbidity and significant economic burdens affecting >250 million people globally. Disease control has, with notable success, for decades focused on drug treatment of infected human populations, but a recent paradigm shift now entails moving from control to elimination. To achieve this ambitious goal, more sensitive diagnostic tools are needed to monitor progress toward transmission interruption in the environment, especially in low-intensity infection areas. We report on the development of an environmental DNA (eDNA)-based tool to efficiently detect DNA traces of the parasite Schistosoma mansoni directly in the aquatic environment, where the nonhuman part of the parasite life cycle occurs. This is a report of the successful detection of S. mansoni in freshwater samples by using aquatic eDNA. True eDNA was detected in as few as 10 cercariae per liter of water in laboratory experiments. The field applicability of the method was tested at known transmission sites in Kenya, where comparison of schistosome detection by conventional snail surveys (snail collection and cercariae shedding) with eDNA (water samples) showed 71% agreement between the methods. The eDNA method furthermore detected schistosome presence at two additional sites where snail shedding failed, demonstrating a higher sensitivity of eDNA sampling. We conclude that eDNA provides a promising tool to substantially improve the environmental surveillance of S. mansoni. Given the proper method and guideline development, eDNA could become an essential future component of the schistosomiasis control tool box needed to achieve the goal of elimination.

Funder

Knud Hoejgaard Foundation

Augustinus Fonden

Danish National Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3