Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis–Menten enzyme kinetics

Author:

Liu Qiong,Wang Jin

Abstract

The driving force for active physical and biological systems is determined by both the underlying landscape and nonequilibrium curl flux. While landscape can be experimentally quantified from the histograms of the collected real-time trajectories of the observables, quantifying the experimental flux remains challenging. In this work, we studied the single-molecule enzyme dynamics of horseradish peroxidase with dihydrorhodamine 123 and hydrogen peroxide (H2O2) as substrates. Surprisingly, significant deviations in the kinetics from the conventional Michaelis–Menten reaction rate were observed. Instead of a linear relationship between the inverse of the enzyme kinetic rate and the inverse of substrate concentration, a nonlinear relationship between the two emerged. We identified nonequilibrium flux as the origin of such non-Michaelis–Menten enzyme rate behavior. Furthermore, we quantified the nonequilibrium flux from experimentally obtained fluorescence correlation spectroscopy data and showed this flux to led to the deviations from the Michaelis–Menten kinetics. We also identified and quantified the nonequilibrium thermodynamic driving forces as the chemical potential and entropy production for such non-Michaelis–Menten kinetics. Moreover, through isothermal titration calorimetry measurements, we identified and quantified the origin of both nonequilibrium dynamic and thermodynamic driving forces as the heat absorbed (energy input) into the enzyme reaction system. Furthermore, we showed that the nonequilibrium driving forces led to time irreversibility through the difference between the forward and backward directions in time and high-order correlations were associated with the deviations from Michaelis–Menten kinetics. This study provided a general framework for experimentally quantifying the dynamic and thermodynamic driving forces for nonequilibrium systems.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3