Abstract
Data analyses typically rely upon assumptions about the missingness mechanisms that lead to observed versus missing data, assumptions that are typically unassessable. We explore an approach where the joint distribution of observed data and missing data are specified in a nonstandard way. In this formulation, which traces back to a representation of the joint distribution of the data and missingness mechanism, apparently first proposed by J. W. Tukey, the modeling assumptions about the distributions are either assessable or are designed to allow relatively easy incorporation of substantive knowledge about the problem at hand, thereby offering a possibly realistic portrayal of the data, both observed and missing. We develop Tukey’s representation for exponential-family models, propose a computationally tractable approach to inference in this class of models, and offer some general theoretical comments. We then illustrate the utility of this approach with an example in systems biology.
Funder
DOD | United States Navy | Office of Naval Research
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献