Abstract
Purkinje neurons in the caudal cerebellar vermis combine semicircular canal and otolith signals to segregate linear and gravitational acceleration, evidence for how the cerebellum creates internal models of body motion. However, it is not known which cerebellar circuit connections are necessary to perform this computation. We first showed that this computation is evolutionarily conserved and represented across multiple lobules of the rodent vermis. Then we tested whether Purkinje neuron GABAergic output is required for accurately differentiating linear and gravitational movements through a conditional genetic silencing approach. By using extracellular recordings from lobules VI through X in awake mice, we show that silencing Purkinje neuron output significantly alters their baseline simple spike variability. Moreover, the cerebellum of genetically manipulated mice continues to distinguish linear from gravitational acceleration, suggesting that the underlying computations remain intact. However, response gain is significantly increased in the mutant mice over littermate controls. Altogether, these data argue that Purkinje neuron feedback regulates gain control within the cerebellar circuit.
Funder
HHS | NIH | National Institute of Neurological Disorders and Stroke
HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development
Simons Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献