Abstract
Thermal stability against crystallization upon isobaric heating at pressure 0.1 ≤ P ≤ 1.9 GPa is compared for five variants of high- (HDA) and very high-density amorphous ice (VHDA) with different preparation history. At 0.1–0.3 GPa expanded HDA (eHDA) and VHDA reach the same state before crystallization, which we infer to be the contested high-density liquid (HDL). Thus, 0.3 GPa sets the high-pressure limit for the possibility to observe HDL for timescales of minutes, hours, and longer. At P > 0.3 GPa the annealed amorphous ices no longer reach the same state before crystallization. Further examination of the results demonstrates that crystallization times are significantly affected both by the density of the amorphous matrix at the crystallization temperature Tx as well as by nanocrystalline domains remaining in unannealed HDA (uHDA) as a consequence of incomplete pressure-induced amorphization.
Funder
Austrian Science Fund
Austrian Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献