Viscoelastic shear stress relaxation in two-dimensional glass-forming liquids

Author:

Flenner ElijahORCID,Szamel Grzegorz

Abstract

Translational dynamics of 2D glass-forming fluids is strongly influenced by soft, long-wavelength fluctuations first recognized by D. Mermin and H. Wagner. As a result of these fluctuations, characteristic features of glassy dynamics, such as plateaus in the mean-squared displacement and the self-intermediate scattering function, are absent in two dimensions. In contrast, Mermin–Wagner fluctuations do not influence orientational relaxation, and well-developed plateaus are observed in orientational correlation functions. It has been suggested that, by monitoring translational motion of particles relative to that of their neighbors, one can recover characteristic features of glassy dynamics and thus disentangle the Mermin–Wagner fluctuations from the 2D glass transition. Here we use molecular dynamics simulations to study viscoelastic relaxation in two and three dimensions. We find different behavior of the dynamic modulus below the onset of slow dynamics (determined by the orientational or cage-relative correlation functions) in two and three dimensions. The dynamic modulus for 2D supercooled fluids is more stretched than for 3D supercooled fluids and does not exhibit a plateau, which implies the absence of glassy viscoelastic relaxation. At lower temperatures, the 2D dynamic modulus starts exhibiting an intermediate time plateau and decays similarly to the 2D dynamic modulus. The differences in the glassy behavior of 2D and 3D glass-forming fluids parallel differences in the ordering scenarios in two and three dimensions.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3