IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation

Author:

Ameri Amir H.,Moradi Tuchayi Sara,Zaalberg Anniek,Park Jong Ho,Ngo Kenneth H.,Li Tiancheng,Lopez Elena,Colonna Marco,Lee Richard T.ORCID,Mino-Kenudson Mari,Demehri Shadmehr

Abstract

Chronic inflammation’s tumor-promoting potential is well-recognized; however, the mechanism underlying the development of this immune environment is unknown. Studying the transition from acute, tumor-suppressive to chronic, tumor-promoting allergic contact dermatitis (ACD) revealed how tumor-promoting chronic inflammation develops. Epidermis-derived interleukin (IL)-33 up-regulation and its induction of regulatory T cell (Treg) accumulation in the skin preceded the transition from acute to chronic ACD and triggered the tumor-promoting immune environment in chronic ACD. Mice lacking IL-33 were protected from chronic ACD and its skin cancer sequela compared with wild-type controls (P= 0.0002). IL-33’s direct signaling onto Tregs was required for the development of the tumor-promoting immune environment in the skin. IL-33–Treg signaling was also required for chronic colitis and its associated colorectal cancer development in a colitis model (P< 0.0001). Significantly increased IL-33 and Tregs marked the perilesional skin and colon in patients with cancer-prone chronic inflammatory diseases. Our findings elucidate the role of the IL-33/Treg axis in creating a tumor-promoting immune environment in chronic inflammatory diseases and suggest therapeutic targets for cancer prevention and treatment in high-risk patients.

Funder

HHS | NIH | NIH Office of the Director

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

Burroughs Wellcome Fund

Sidney Kimmel Foundation

Cancer Research Institute

Howard Hughes Medical Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3