Multilayer network switching rate predicts brain performance

Author:

Pedersen Mangor,Zalesky Andrew,Omidvarnia Amir,Jackson Graeme D.

Abstract

Large-scale brain dynamics are characterized by repeating spatiotemporal connectivity patterns that reflect a range of putative different brain states that underlie the dynamic repertoire of brain functions. The role of transition between brain networks is poorly understood, and whether switching between these states is important for behavior has been little studied. Our aim was to model switching between functional brain networks using multilayer network methods and test for associations between model parameters and behavioral measures. We calculated time-resolved fMRI connectivity in 1,003 healthy human adults from the Human Connectome Project. The time-resolved fMRI connectivity data were used to generate a spatiotemporal multilayer modularity model enabling us to quantify network switching, which we define as the rate at which each brain region transits between different networks. We found (i) an inverse relationship between network switching and connectivity dynamics, where the latter was defined in terms of time-resolved fMRI connections with variance in time that significantly exceeded phase-randomized surrogate data; (ii) brain connectivity was lower during intervals of network switching; (iii) brain areas with frequent network switching had greater temporal complexity; (iv) brain areas with high network switching were located in association cortices; and (v) using cross-validated elastic net regression, network switching predicted intersubject variation in working memory performance, planning/reasoning, and amount of sleep. Our findings shed light on the importance of brain dynamics predicting task performance and amount of sleep. The ability to switch between network configurations thus appears to be a fundamental feature of optimal brain function.

Funder

Department of Health | National Health and Medical Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3