Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response

Author:

Park Donglim Esther,Cheng Jingwei,Berrios Christian,Montero Joan,Cortés-Cros Marta,Ferretti Stéphane,Arora Reety,Tillgren Michelle L.,Gokhale Prafulla C.,DeCaprio James A.ORCID

Abstract

Merkel cell polyomavirus (MCV) contributes to approximately 80% of all Merkel cell carcinomas (MCCs), a highly aggressive neuroendocrine carcinoma of the skin. MCV-positive MCC expresses small T antigen (ST) and a truncated form of large T antigen (LT) and usually contains wild-type p53 (TP53) and RB (RB1). In contrast, virus-negative MCC contains inactivating mutations in TP53 and RB1. While the MCV-truncated LT can bind and inhibit RB, it does not bind p53. We report here that MCV LT binds to RB, leading to increased levels of ARF, an inhibitor of MDM2, and activation of p53. However, coexpression of ST reduced p53 activation. MCV ST recruits the MYC homologue MYCL (L-Myc) to the EP400 chromatin remodeler complex and transactivates specific target genes. We observed that depletion of EP400 in MCV-positive MCC cell lines led to increased p53 target gene expression. We suspected that the MCV ST–MYCL–EP400 complex could functionally inactivate p53, but the underlying mechanism was not known. Integrated ChIP and RNA-sequencing analysis following EP400 depletion identified MDM2 as well as CK1α, an activator of MDM4, as target genes of the ST–MYCL–EP400 complex. In addition, MCV-positive MCC cells expressed high levels of MDM4. Combining MDM2 inhibitors with lenalidomide targeting CK1α or an MDM4 inhibitor caused synergistic activation of p53, leading to an apoptotic response in MCV-positive MCC cells and MCC-derived xenografts in mice. These results support dual targeting of MDM2 and MDM4 in virus-positive MCC and other p53 wild-type tumors.

Funder

HHS | NIH | National Cancer Institute

Wellcome Trust DBT India Alliance Early Career Fellowship

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3