Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic

Author:

Batiste Suzanne M.,Blackwell Daniel J.,Kim Kyungsoo,Kryshtal Dmytro O.,Gomez-Hurtado Nieves,Rebbeck Robyn T.,Cornea Razvan L.,Johnston Jeffrey N.ORCID,Knollmann Bjorn C.ORCID

Abstract

Ca2+ leak via ryanodine receptor type 2 (RyR2) can cause potentially fatal arrhythmias in a variety of heart diseases and has also been implicated in neurodegenerative and seizure disorders, making RyR2 an attractive therapeutic target for drug development. Here we synthesized and investigated the fungal natural product and known insect RyR antagonist (−)-verticilide and several congeners to determine their activity against mammalian RyR2. Although the cyclooligomeric depsipeptide natural product (−)-verticilide had no effect, its nonnatural enantiomer [ent-(+)-verticilide] significantly reduced RyR2-mediated spontaneous Ca2+ leak both in cardiomyocytes from wild-type mouse and from a gene-targeted mouse model of Ca2+ leak-induced arrhythmias (Casq2−/−). ent-(+)-verticilide selectively inhibited RyR2-mediated Ca2+ leak and exhibited higher potency and a distinct mechanism of action compared with the pan-RyR inhibitors dantrolene and tetracaine and the antiarrhythmic drug flecainide. ent-(+)-verticilide prevented arrhythmogenic membrane depolarizations in cardiomyocytes without significant effects on the cardiac action potential and attenuated ventricular arrhythmia in catecholamine-challenged Casq2−/− mice. These findings indicate that ent-(+)-verticilide is a potent and selective inhibitor of RyR2-mediated diastolic Ca2+ leak, making it a molecular tool to investigate the therapeutic potential of targeting RyR2 hyperactivity in heart and brain pathologies. The enantiomer-specific activity and straightforward chemical synthesis of (unnatural) ent-(+)-verticilide provides a compelling argument to prioritize ent-natural product synthesis. Despite their general absence in nature, the enantiomers of natural products may harbor unprecedented activity, thereby leading to new scaffolds for probe and therapeutic development.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3