Generalizing the effects of chirality on block copolymer assembly

Author:

Wang Hsiao-Fang,Yang Kai-Chieh,Hsu Wen-Chun,Lee Jing-Yu,Hsu Jung-Tzu,Grason Gregory M.,Thomas Edwin L.,Tsai Jing-Cherng,Ho Rong-MingORCID

Abstract

We explore the generality of the influence of segment chirality on the self-assembled structure of achiral–chiral diblock copolymers. Poly(cyclohexylglycolide) (PCG)-based chiral block copolymers (BCPs*), poly(benzyl methacrylate)-b-poly(d-cyclohexylglycolide) (PBnMA-PDCG) and PBnMA-b-poly(l-cyclohexyl glycolide) (PBnMA-PLCG), were synthesized for purposes of systematic comparison with polylactide (PLA)-based BCPs*, previously shown to exhibit chirality transfer from monomeric unit to the multichain domain morphology. Opposite-handed PCG helical chains in the enantiomeric BCPs* were identified by the vibrational circular dichroism (VCD) studies revealing transfer from chiral monomers to chiral intrachain conformation. We report further VCD evidence of chiral interchain interactions, consistent with some amounts of handed skew configurations of PCG segments in a melt state packing. Finally, we show by electron tomography [3D transmission electron microscope tomography (3D TEM)] that chirality at the monomeric and intrachain level ultimately manifests in the symmetry of microphase-separated, multichain morphologies: a helical phase (H*) of hexagonally, ordered, helically shaped tubular domains whose handedness agrees with the respective monomeric chirality. Critically, unlike previous PLA-based BCP*s, the lack of a competing crystalline state of the chiral PCGs allowed determination that H* is an equilibrium phase of chiral PBnMA-PCG. We compared different measures of chirality at the monomer scale for PLA and PCG, and argued, on the basis of comparison with mean-field theory results for chiral diblock copolymer melts, that the enhanced thermodynamic stability of the mesochiral H* morphology may be attributed to the relatively stronger chiral intersegment forces, ultimately tracing from the effects of a bulkier chiral side group on its main chain.

Funder

Ministry of Science and Technology, Taiwan

DOD | USAF | AFMC | Air Force Office of Scientific Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3