Vibrio choleraefilamentation promotes chitin surface attachment at the expense of competition in biofilms

Author:

Wucher Benjamin R.,Bartlett Thomas M.,Hoyos Mona,Papenfort KaiORCID,Persat Alexandre,Nadell Carey D.ORCID

Abstract

Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell–resolution confocal microscopy to explore biofilms of the human pathogenVibrio choleraein conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation inV. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain ofV. choleraeO139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marineVibriospecies depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of theV. choleraebiofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secretingV. choleraevariants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.

Funder

Deutsche Forschungsgemeinschaft

Swiss National Science Foundation

National Science Foundation

Cystic Fibrosis Foundation

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3