A force field for virtual atom molecular mechanics of proteins

Author:

Korkut Anil,Hendrickson Wayne A.

Abstract

Activities of many biological macromolecules involve large conformational transitions for which crystallography can specify atomic details of alternative end states, but the course of transitions is often beyond the reach of computations based on full-atomic potential functions. We have developed a coarse-grained force field for molecular mechanics calculations based on the virtual interactions of Cα atoms in protein molecules. This force field is parameterized based on the statistical distribution of the energy terms extracted from crystallographic data, and it is formulated to capture features dependent on secondary structure and on residue-specific contact information. The resulting force field is applied to energy minimization and normal mode analysis of several proteins. We find robust convergence in minimizations to low energies and energy gradients with low degrees of structural distortion, and atomic fluctuations calculated from the normal mode analyses correlate well with the experimental B-factors obtained from high-resolution crystal structures. These findings suggest that the virtual atom force field is a suitable tool for various molecular mechanics applications on large macromolecular systems undergoing large conformational changes.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3