Substrate binding site flexibility of the small heat shock protein molecular chaperones

Author:

Jaya Nomalie,Garcia Victor,Vierling Elizabeth

Abstract

Small heat shock proteins (sHSPs) serve as a first line of defense against stress-induced cell damage by binding and maintaining denaturing proteins in a folding-competent state. In contrast to the well-defined substrate binding regions of ATP-dependent chaperones, interactions between sHSPs and substrates are poorly understood. Defining substrate-binding sites of sHSPs is key to understanding their cellular functions and to harnessing their aggregation-prevention properties for controlling damage due to stress and disease. We incorporated a photoactivatable cross-linker at 32 positions throughout a well-characterized sHSP, dodecameric PsHsp18.1 from pea, and identified direct interaction sites between sHSPs and substrates. Model substrates firefly luciferase and malate dehydrogenase form strong contacts with multiple residues in the sHSP N-terminal arm, demonstrating the importance of this flexible and evolutionary variable region in substrate binding. Within the conserved α-crystallin domain both substrates also bind the β-strand (β7) where mutations in human homologs result in inherited disease. Notably, these binding sites are poorly accessible in the sHSP atomic structure, consistent with major structural rearrangements being required for substrate binding. Detectable differences in the pattern of cross-linking intensity of the two substrates and the fact that substrates make contacts throughout the sHSP indicate that there is not a discrete substrate binding surface. Our results support a model in which the intrinsically-disordered N-terminal arm can present diverse geometries of interaction sites, which is likely critical for the ability of sHSPs to protect efficiently many different substrates.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3