Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size

Author:

Morrison Filomene G.,Dias Brian G.,Ressler Kerry J.

Abstract

Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3