Discriminating direct and indirect connectivities in biological networks

Author:

Kang Taek,Moore Richard,Li Yi,Sontag Eduardo,Bleris Leonidas

Abstract

Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. Despite concurrent advances in quality and quantity of data as well as computing resources and algorithms, difficulties in deciphering direct and indirect network connections are prevalent. Here, we adopt the notions of abstraction, emulation, benchmarking, and validation in the context of discovering features specific to this family of connectivities. After subjecting benchmark synthetic circuits to perturbations, we inferred the network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discovered that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between topologies. Our results point to a conceptual advance for reverse engineering beyond weight inference. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks.

Funder

NIH

NSF

AFOSR

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating prior information in gene expression network-based cancer heterogeneity analysis;Biostatistics;2024-07-29

2. Edge Selections in Bilinear Dynamic Networks;IEEE Transactions on Automatic Control;2024-01

3. Relating the Network Graphs of State-Space Representations to Granger Causality Conditions;Lecture Notes in Control and Information Sciences;2024

4. Statistical analyses and visualization of biological sequencing big data;Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants;2024

5. Refinement of Biological Regulatory Graphs using Functional Enrichment;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3