Author:
Nguyen Trung Dac,Schultz Benjamin A.,Kotov Nicholas A.,Glotzer Sharon C.
Abstract
Self-limited, or terminal, supraparticles have long received great interest because of their abundance in biological systems (DNA bundles and virus capsids) and their potential use in a host of applications ranging from photonics and catalysis to encapsulation for drug delivery. Moreover, soft, uniform colloidal aggregates are a promising candidate for quasicrystal and other hierarchical assemblies. In this work, we present a generic coarse-grained model that captures the formation of self-limited assemblies observed in various soft-matter systems including nanoparticles, colloids, and polyelectrolytes. Using molecular dynamics simulations, we demonstrate that the assembly process is self-limited when the repulsion between the particles is renormalized to balance their attraction during aggregation. The uniform finite-sized aggregates are further shown to be thermodynamically stable and tunable with a single dimensionless parameter. We find large aggregates self-organize internally into a core–shell morphology and exhibit anomalous uniformity when the constituent nanoparticles have a polydisperse size distribution.
Funder
U.S. Army Research Office
DOD/AS
Publisher
Proceedings of the National Academy of Sciences
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献