Author:
Shroff Emelyn H.,Eberlin Livia S.,Dang Vanessa M.,Gouw Arvin M.,Gabay Meital,Adam Stacey J.,Bellovin David I.,Tran Phuoc T.,Philbrick William M.,Garcia-Ocana Adolfo,Casey Stephanie C.,Li Yulin,Dang Chi V.,Zare Richard N.,Felsher Dean W.
Abstract
The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization–mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease.
Funder
HHS | National Institutes of Health
HHS | NIH | National Cancer Institute
Leukemia and Lymphoma Society
American Lung Association
Publisher
Proceedings of the National Academy of Sciences
Cited by
218 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献