Author:
Wang Jianchun,Li Qianxiao,E Weinan
Abstract
The stability of the plane Poiseuille flow is analyzed using a thermodynamic formalism by considering the deterministic Navier–Stokes equation with Gaussian random initial data. A unique critical Reynolds number, Rec≈2,332, at which the probability of observing puffs in the solution changes from 0 to 1, is numerically demonstrated to exist in the thermodynamic limit and is found to be independent of the noise amplitude. Using the puff density as the macrostate variable, the free energy of such a system is computed and analyzed. The puff density approaches zero as the critical Reynolds number is approached from above, signaling a continuous transition despite the fact that the bifurcation is subcritical for a finite-sized system. An action function is found for the probability of observing puffs in a small subregion of the flow, and this action function depends only on the Reynolds number. The strategy used here should be applicable to a wide range of other problems exhibiting subcritical instabilities.
Funder
NNSFC
DOD | Office of Naval Research
Agency for Science, Technology and Research
Publisher
Proceedings of the National Academy of Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献