Author:
To Tsz-Leung,Piggott Beverly J.,Makhijani Kalpana,Yu Dan,Jan Yuh Nung,Shu Xiaokun
Abstract
Fluorescence resonance energy transfer-based reporters have been widely used in imaging cell signaling; however, their in vivo application has been handicapped because of poor signal. Although fluorogenic reporters overcome this problem, no such reporter of proteases has been demonstrated for in vivo imaging. Now we have redesigned an infrared fluorescent protein so that its chromophore incorporation is regulated by protease activity. Upon protease activation, the infrared fluorogenic protease reporter becomes fluorescent with no requirement of exogenous cofactor. To demonstrate biological applications, we have designed an infrared fluorogenic executioner-caspase reporter, which reveals spatiotemporal coordination between cell apoptosis and embryonic morphogenesis, as well as dynamics of apoptosis during tumorigenesis in Drosophila. The designed scaffold may be used to engineer reporters of other proteases with specific cleavage sequence.
Funder
Howard Hughes Medical Institute
NIH
Damon Runyon Cancer Research Foundation
UCSF
HHS | NIH | National Heart, Lung, and Blood Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献