Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy

Author:

Chiu Wing Sin,Belsey Natalie A.,Garrett Natalie L.,Moger Julian,Delgado-Charro M. Begoña,Guy Richard H.

Abstract

The effective treatment of diseases of the nail remains an important unmet medical need, primarily because of poor drug delivery. To address this challenge, the diffusion, in real time, of topically applied chemicals into the human nail has been visualized and characterized using stimulated Raman scattering (SRS) microscopy. Deuterated water (D2O), propylene glycol (PG-d8), and dimethyl sulphoxide (DMSO-d6) were separately applied to the dorsal surface of human nail samples. SRS microscopy was used to image D2O, PG-d8/DMSO-d6, and the nail through the O-D, -CD2, and -CH2 bond stretching Raman signals, respectively. Signal intensities obtained were measured as functions of time and of depth into the nail. It was observed that the diffusion of D2O was more than an order of magnitude faster than that of PG-d8 and DMSO-d6. Normalization of the Raman signals, to correct in part for scattering and absorption, permitted semiquantitative analysis of the permeation profiles and strongly suggested that solvent diffusion diverged from classical behavior and that derived diffusivities may be concentration dependent. It appeared that the uptake of solvent progressively undermined the integrity of the nail. This previously unreported application of SRS has permitted, therefore, direct visualization and semiquantitation of solvent penetration into the human nail. The kinetics of uptake of the three chemicals studied demonstrated that each altered its own diffusion in the nail in an apparently concentration-dependent fashion. The scale of the unexpected behavior observed may prove beneficial in the design and optimization of drug formulations to treat recalcitrant nail disease.

Funder

GlaxoSmithKline

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3