Inactive conformation enhances binding function in physiological conditions

Author:

Yakovenko Olga,Tchesnokova Veronika,Sokurenko Evgeni V.,Thomas Wendy E.

Abstract

Many receptors display conformational flexibility, in which the binding pocket has an open inactive conformation in the absence of ligand and a tight active conformation when bound to ligand. Here we study the bacterial adhesin FimH to address the role of the inactive conformation of the pocket for initiating binding by comparing two variants: a wild-type FimH variant that is in the inactive state when not bound to its target mannose, and an engineered activated variant that is always in the active state. Not surprisingly, activated FimH has a longer lifetime and higher affinity, and bacteria expressing activated FimH bound better in static conditions. However, bacteria expressing wild-type FimH bound better in flow. Wild-type and activated FimH demonstrated similar mechanical strength, likely because mechanical force induces the active state in wild-type FimH. However, wild-type FimH displayed a faster bond association rate than activated FimH. Moreover, the ability of different FimH variants to mediate adhesion in flow reflected the fraction of FimH in the inactive state. These results demonstrate a new model for ligand-associated conformational changes that we call the kinetic-selection model, in which ligand-binding selects the faster-binding inactive state and then induces the active state. This model predicts that in physiological conditions for cell adhesion, mechanical force will drive a nonequilibrium cycle that uses the fast binding rate of the inactive state and slow unbinding rate of the active state, for a higher effective affinity than is possible at equilibrium.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

NSF | ENG | Division of Civil, Mechanical and Manufacturing Innovation

NSF | ENG | Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3