Author:
Dweck Hany K. M.,Ebrahim Shimaa A. M.,Thoma Michael,Mohamed Ahmed A. M.,Keesey Ian W.,Trona Federica,Lavista-Llanos Sofia,Svatoš Aleš,Sachse Silke,Knaden Markus,Hansson Bill S.
Abstract
Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fruM)-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved.
Publisher
Proceedings of the National Academy of Sciences
Cited by
230 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献