Cysteine cathepsins are essential in lysosomal degradation of α-synuclein

Author:

McGlinchey Ryan P.,Lee Jennifer C.

Abstract

A cellular feature of Parkinson’s disease is cytosolic accumulation and amyloid formation of α-synuclein (α-syn), implicating a misregulation or impairment of protein degradation pathways involving the proteasome and lysosome. Within lysosomes, cathepsin D (CtsD), an aspartyl protease, is suggested to be the main protease for α-syn clearance; however, the protease alone only generates amyloidogenic C terminal-truncated species (e.g., 1–94, 5–94), implying that other proteases and/or environmental factors are needed to facilitate degradation and to avoid α-syn aggregation in vivo. Using liquid chromatography–mass spectrometry, to our knowledge, we report the first peptide cleavage map of the lysosomal degradation process of α-syn. Studies of purified mouse brain and liver lysosomal extracts and individual human cathepsins demonstrate a direct involvement of cysteine cathepsin B (CtsB) and L (CtsL). Both CtsB and CtsL cleave α-syn within its amyloid region and circumvent fibril formation. For CtsD, only in the presence of anionic phospholipids can this protease cleave throughout the α-syn sequence, suggesting that phospholipids are crucial for its activity. Taken together, an interplay exists between α-syn conformation and cathepsin activity with CtsL as the most efficient under the conditions examined. Notably, we discovered that CtsL efficiently degrades α-syn amyloid fibrils, which by definition are resistant to broad spectrum proteases. This work implicates CtsB and CtsL as essential in α-syn lysosomal degradation, establishing groundwork to explore mechanisms to enhance their cellular activity and levels as a potential strategy for clearance of α-syn.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3