Estrogen receptor β exon 3-deleted mouse: The importance of non-ERE pathways in ERβ signaling

Author:

Maneix Laure,Antonson Per,Humire Patricia,Rochel-Maia Sabrina,Castañeda Jessica,Omoto Yoko,Kim Hyun-Jin,Warner Margaret,Gustafsson Jan-Åke

Abstract

In 1998, an estrogen receptor β (ERβ) knockout (KO) mouse was created by interrupting the gene at the DNA binding domain (DBD) with a neocassette. The mutant females were subfertile and there were abnormalities in the brain, prostate, lung, colon, and immune system. In 2008, another ERβ mutant mouse was generated by deleting ERβ exon 3 which encodes the first zinc finger in the DBD. The female mice of this strain were unable to ovulate but were otherwise normal. The differences in the phenotypes of the two KO strains, have led to questions about the physiological function of ERβ. In the present study, we created an ERβ exon 3-deleted mouse (ERβ-Δex3) and confirmed that the only observable defect was anovulation. Despite the two in-frame stop codons introduced by splicing between exons 2 and 4, an ERβ protein was expressed in nuclei of prostate epithelial cells. Using two different anti-ERβ antibodies, we showed that an in-frame ligand binding domain and C terminus were present in the ERβ-Δex3 protein. Moreover, with nuclear extracts from ERβ-Δex3 prostates, there was an ERβ-dependent retardation of migration of activator protein-1 response elements in EMSA. Unlike the original knockout mouse, expression of Ki67, androgen receptor, and Dachshund-1 in prostate epithelium was not altered in the ERβ-Δex3 mouse. We conclude that very little of ERβ transcriptional activity depends on binding to classical estrogen response elements (EREs).

Funder

Cancer Prevention and Research Institute of Texas

Texas Emerging Technology Fund

Robert A. Welch Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3