Dynamical heterogeneity in active glasses is inherently different from its equilibrium behavior

Author:

Paul Kallol1,Mutneja Anoop1ORCID,Nandi Saroj Kumar1ORCID,Karmakar Smarajit1ORCID

Affiliation:

1. Tata Institute of Fundamental Research Center for Interdisciplinary Science, Hyderabad 500046, Telangana, India

Abstract

Activity-driven glassy dynamics, while ubiquitous in collective cell migration, intracellular transport, dynamics in bacterial and ant colonies, etc., also extends the scope and extent of the as-yet mysterious physics of glass transition. Active glasses are hitherto assumed to be qualitatively similar to their equilibrium counterparts at an effective temperature, T eff . Here, we combine large-scale simulations and an analytical mode-coupling theory (MCT) for such systems and show that, in fact, an active glass is inherently different from an equilibrium glass. Although the relaxation dynamics can be equilibrium-like at a T eff , effects of activity on the dynamic heterogeneity (DH), which is a hallmark of glassy dynamics, are quite nontrivial and complex. With no preexisting data, we employ four distinct methods for reliable estimates of the DH length scales. Our work shows that active glasses exhibit dramatic growth of DH and systems with similar relaxation times, and thus, T eff can have widely varying DH. To theoretically study DH, we extend active MCT and find good qualitative agreement between the theory and simulation results. Our results pave avenues for understanding the role of DH in glassy dynamics and can have fundamental significance even in equilibrium.

Funder

Department of Atomic Energy, Government of India

Department of Science and Technology, Ministry of Science and Technology, India

DST | Science and Engineering Research Board

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the anatomy of mode-coupling theory;SciPost Physics;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3