Driving and characterizing nucleation of urea and glycine polymorphs in water

Author:

Zou Ziyue1,Beyerle Eric R.2ORCID,Tsai Sun-Ting3,Tiwary Pratyush12

Affiliation:

1. Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742

2. Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742

3. Department of Physics, University of Maryland, College Park, MD 20742

Abstract

Crystal nucleation is relevant across the domains of fundamental and applied sciences. However, in many cases, its mechanism remains unclear due to a lack of temporal or spatial resolution. To gain insights into the molecular details of nucleation, some form of molecular dynamics simulations is typically performed; these simulations, in turn, are limited by their ability to run long enough to sample the nucleation event thoroughly. To overcome the timescale limits in typical molecular dynamics simulations in a manner free of prior human bias, here, we employ the machine learning-augmented molecular dynamics framework “reweighted autoencoded variational Bayes for enhanced sampling (RAVE).” We study two molecular systems—urea and glycine—in explicit all-atom water, due to their enrichment in polymorphic structures and common utility in commercial applications. From our simulations, we observe multiple back-and-forth nucleation events of different polymorphs from homogeneous solution; from these trajectories, we calculate the relative ranking of finite-sized polymorph crystals embedded in solution, in terms of the free-energy difference between the finite-sized crystal polymorph and the original solution state. We further observe that the obtained reaction coordinates and transitions are highly nonclassical.

Funder

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3