The Montreal Protocol is delaying the occurrence of the first ice-free Arctic summer

Author:

England Mark R.12ORCID,Polvani Lorenzo M.34ORCID

Affiliation:

1. Department of Earth and Planerary Sciences, University of California, Santa Cruz, CA 95064

2. Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, United Kingdom

3. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027

4. Lamont Doherty Earth Observatory, Columbia University, New York, NY 10027

Abstract

The rapid melting of Arctic sea ice is the largest and clearest signal of anthropogenic climate change. Current projections indicate that the first ice-free Arctic summer will likely occur by mid-century, owing to increasing carbon dioxide concentrations in the atmosphere. However, other powerful greenhouse gases have also contributed to Arctic sea ice loss, notably ozone-depleting substances (ODSs). In the late 1980s, ODSs became strictly regulated by the Montreal Protocol, and their atmospheric concentrations have been declining since the mid-1990s. Here, analyzing new climate model simulations, we demonstrate that the Montreal Protocol, designed to protect the ozone layer, is delaying the first appearance of an ice-free Arctic summer, by up to 15 y, depending on future emissions. We also show that this important climate mitigation stems entirely from the reduced greenhouse gas warming from the regulated ODSs, with the avoided stratospheric ozone losses playing no role. Finally, we estimate that each Gg of averted ODS emissions results in approximately 7 km 2 of avoided Arctic sea ice loss.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3