Affiliation:
1. Department of Neurology, McGovern Medical School, The University of Texas, Houston, TX 77030
2. Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
3. Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030
Abstract
Our current understanding of brain rhythms is based on quantifying their instantaneous or time-averaged characteristics. What remains unexplored is the actual structure of the waves—their shapes and patterns over finite timescales. Here, we study brain wave patterning in different physiological contexts using two independent approaches: The first is based on quantifying stochasticity relative to the underlying mean behavior, and the second assesses “orderliness” of the waves’ features. The corresponding measures capture the waves’ characteristics and abnormal behaviors, such as atypical periodicity or excessive clustering, and demonstrate coupling between the patterns’ dynamics and the animal’s location, speed, and acceleration. Specifically, we studied patterns of
θ
,
γ
, and ripple waves recorded in mice hippocampi and observed speed-modulated changes of the wave’s cadence, an antiphase relationship between orderliness and acceleration, as well as spatial selectiveness of patterns. Taken together, our results offer a complementary—mesoscale—perspective on brain wave structure, dynamics, and functionality.
Funder
HHS | National Institutes of Health
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献