Hematopoietic Jagged1 is a fetal liver niche factor required for functional maturation and engraftment of fetal hematopoietic stem cells

Author:

Shao Lijian1ORCID,Paik Na Yoon1,Sanborn Mark A.2ORCID,Bandara Thilinie1ORCID,Vijaykumar Anjali3ORCID,Sottoriva Kilian1,Rehman Jalees2ORCID,Nombela-Arrieta Cesar3,Pajcini Kostandin V.1ORCID

Affiliation:

1. Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612

2. Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612

3. Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland

Abstract

Notch signaling is essential for the emergence of definitive hematopoietic stem cells (HSCs) in the embryo and their development in the fetal liver niche. However, how Notch signaling is activated and which fetal liver cell type provides the ligand for receptor activation in HSCs is unknown. Here we provide evidence that endothelial Jagged1 (Jag1) has a critical early role in fetal liver vascular development but is not required for hematopoietic function during fetal HSC expansion. We demonstrate that Jag1 is expressed in many hematopoietic cells in the fetal liver, including HSCs, and that its expression is lost in adult bone marrow HSCs. Deletion of hematopoietic Jag1 does not affect fetal liver development; however, Jag1-deficient fetal liver HSCs exhibit a significant transplantation defect. Bulk and single-cell transcriptomic analysis of HSCs during peak expansion in the fetal liver indicates that loss of hematopoietic Jag1 leads to the downregulation of critical hematopoietic factors such as GATA2, Mllt3, and HoxA7, but does not perturb Notch receptor expression. Ex vivo activation of Notch signaling in Jag1-deficient fetal HSCs partially rescues the functional defect in a transplant setting. These findings indicate a new fetal-specific niche that is based on juxtracrine hematopoietic Notch signaling and reveal Jag1 as a fetal-specific niche factor essential for HSC function.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3