Minimal conditions for solidification and thermal processing of colloidal gels

Author:

Fenton Scott M.1,Padmanabhan Poornima2ORCID,Ryu Brian K.3ORCID,Nguyen Tuan T. D.1ORCID,Zia Roseanna N.3ORCID,Helgeson Matthew E.1ORCID

Affiliation:

1. Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106

2. Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY 14623

3. Department of Chemical Engineering, Stanford University, Stanford, CA 94305

Abstract

Colloidal gelation is used to form processable soft solids from a wide range of functional materials. Although multiple gelation routes are known to create gels of different types, the microscopic processes during gelation that differentiate them remain murky. A fundamental question is how the thermodynamic quench influences the microscopic driving forces of gelation, and determines the threshold or minimal conditions where gels form. We present a method that predicts these conditions on a colloidal phase diagram, and mechanistically connects the quench path of attractive and thermal forces to the emergence of gelled states. Our method employs systematically varied quenches of a colloidal fluid over a range of volume fractions to identify minimal conditions for gel solidification. The method is applied to experimental and simulated systems to test its generality toward attractions with varied shapes. Using structural and rheological characterization, we show that all gels incorporate elements of percolation, phase separation, and glassy arrest, where the quench path sets their interplay and determines the shape of the gelation boundary. We find that the slope of the gelation boundary corresponds to the dominant gelation mechanism, and its location approximately scales with the equilibrium fluid critical point. These results are insensitive to potential shape, suggesting that this interplay of mechanisms is applicable to a wide range of colloidal systems. By resolving regions of the phase diagram where this interplay evolves in time, we elucidate how programmed quenches to the gelled state could be used to effectively tailor gel structure and mechanics.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3