Strong connectivity in real directed networks

Author:

Rodgers Niall12ORCID,Tiňo Peter3ORCID,Johnson Samuel14ORCID

Affiliation:

1. School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom

2. Topological Design Centre for Doctoral Training, University of Birmingham, Birmingham B15 2TT, United Kingdom

3. School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom

4. The Alan Turing Institute, British Library, London NW1 2DB, United Kingdom

Abstract

In many real, directed networks, the strongly connected component of nodes which are mutually reachable is very small. This does not fit with current theory, based on random graphs, according to which strong connectivity depends on mean degree and degree–degree correlations. And it has important implications for other properties of real networks and the dynamical behavior of many complex systems. We find that strong connectivity depends crucially on the extent to which the network has an overall direction or hierarchical ordering—a property measured by trophic coherence. Using percolation theory, we find the critical point separating weakly and strongly connected regimes and confirm our results on many real-world networks, including ecological, neural, trade, and social networks. We show that the connectivity structure can be disrupted with minimal effort by a targeted attack on edges which run counter to the overall direction. This means that many dynamical processes on networks can depend significantly on a small fraction of edges.

Funder

UKRI | Engineering and Physical Sciences Research Council

Alan Turing Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3