Dislocation-tuned ferroelectricity and ferromagnetism of the BiFeO 3 /SrRuO 3 interface

Author:

Li Xiaomei1234,Han Bo13,Zhu Ruixue13,Shi Ruochen13ORCID,Wu Mei13,Sun Yuanwei13,Li Yuehui13ORCID,Liu Bingyao13,Wang Lifen45ORCID,Zhang Jingmin3,Tan Congbing6ORCID,Gao Peng13789,Bai Xuedong45ORCID

Affiliation:

1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

2. School of Integrated Circuits, East China Normal University, Shanghai 200241, China

3. Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China

4. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

5. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

6. Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, China

7. Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China

8. Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China

9. Hefei National Laboratory, Hefei 230088, China

Abstract

Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO 3 /SrRuO 3 interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO 3 and magnetic moments in SrRuO 3 near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3