Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids

Author:

Costa Bruno12,Li Calzi Marco1ORCID,Castellano Mauricio13,Blanco Valentina13ORCID,Cuevasanta Ernesto245ORCID,Litvan Irene6ORCID,Ivanov Pavel7ORCID,Witwer Kenneth8ORCID,Cayota Alfonso19,Tosar Juan Pablo12ORCID

Affiliation:

1. Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay

2. Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo 11400, Uruguay

3. Biochemistry Department, School of Science, Universidad de la República, Montevideo 11400, Uruguay

4. Laboratory of Enzymology, School of Science, Universidad de la República, Montevideo 11400, Uruguay

5. Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay

6. Department of Neurosciences, University of California San Diego, La Jolla, CA 92093

7. Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115

8. Molecular and Comparative Pathobiology, Neurology, and The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21205

9. Hospital de Clínicas, Universidad de la República, Montevideo 11600, Uruguay

Abstract

Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.

Funder

HHS | NIH | NIH Office of the Director

HHS | National Institutes of Health

Universidad de la República Uruguay

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3